Steps To Graph Polynomial Functions

1. Make sure the function is arranged in the correct descending order of power.

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
, where the leading coefficient $a_n \neq 0$

2. Determine the far-left and far-right behavior of the function.

	n is even	n is odd
	up to the far-left up to the far-right	down to the far-left up to the far-right
<i>a</i> _n > 0		→ → → →
	down to the far-left down to the far-right	up to the far-left down to the far-right
<i>a</i> _n < 0	1	Ţy

3. Find the *y*-intercept.

- a. To find f(0), substitute zero for each x in the function.
- b. Write your *y*-intercept in the form (0, __)
- c. Plot this point.

4. Find any x-intercepts.

- a. Set the function equal to zero.
- b. Solve the resulting equation by factoring (or use the Rational Zeros Theorem to find the real zeros).
- c. Write the x-intercepts in the form ($_$, 0)
- d. Plot these points.

NOTE: You will need the **factored form** found in this step to complete the rest of the steps.

$$f(x) = (x - a)(x + b)(x - c)...$$

- 5. Use the x-intercepts (zeros) to divide the x-axis into intervals and choose test a point in each interval. Determine the sign of all function values in that interval.
- 6. Use the multiplicity of each zero to determine where the graph crosses the x-axis.

For each factor $(x - c)^k$ of the function f:

- If k is **even**, the graph will intersect but **not** cross the x-axis at (c, 0).
- If k is **odd**, the graph will cross the x-axis at (c, 0).

7. If necessary, find additional points to draw an accurate graph.

- Substitute values for *x* into the factored form of the function, not the expanded form.
- · Pay attention to signs when you are simplifying.

8. Sketch the graph.

Your graph should be a smooth, continuous curve that contains at most $n \times x$ -intercepts and at most (n-1) turning points.